Polo Sport  Polo Club  Polo ponies  Players Equipment  The field  Notable players  Handicap players Sheaves On Graphs, Their Homological Invariants, And A Proof Of The Hanna Neumann Conjecture RRP $245.99 In this paper the author establishes some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. He then uses these ideas to prove the Hanna Neumann Conjecture of the 1950s; in fact, he proves a strengthened form of the conjecture. Classical And Involutive Invariants Of Krull Domains RRP $27.99 Just suppose, for a moment, that all rings of integers in algebraic number fields were unique factorization domains, then it would be fairly easy to produce a proof of Fermat's Last Theorem, fitting, say, in the margin of this page. Unfortunately however, rings of integers are not that nice in general, so that, for centuries, mathÂ ematicians had to search for alternative proofs, a quest which culminated finally in Wiles' marvelous results  but this is history. The fact remains that modern algebraic number theory really started off with inÂ vestigating the problem which rings of integers actually are unique factorization domains. The best approach to this question is, of course, through the general theÂ ory of Dedekind rings, using the full power of their class group, whose vanishing is, by its very definition, equivalent to the unique factorization property. Using the fact that a Dedekind ring is essentially just a onedimensional global version of discrete valuation rings, one easily verifies that the class group of a Dedekind ring coincides with its Picard group, thus making it into a nice, functorial invariant, which may be studied and calculated through algebraic, geometric and co homological methods. In view of the success of the use of the class group within the framework of Dedekind rings, one may wonder whether it may be applied in other contexts as well. However, for more general rings, even the definition of the class group itself causes problems. Flow Lines And Algebraic Invariants In Contact Form Geometry RRP $464.99 This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudoholomorphic curves, and GromovWitten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, nonFredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabetype problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers. Search
Polo Articles
Polo Books

