Polo Sport  Polo Club  Polo ponies  Players Equipment  The field  Notable players  Handicap players Sheaves On Graphs, Their Homological Invariants, And A Proof Of The Hanna Neumann Conjecture RRP $245.99 In this paper the author establishes some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. He then uses these ideas to prove the Hanna Neumann Conjecture of the 1950s; in fact, he proves a strengthened form of the conjecture. Classical And Involutive Invariants Of Krull Domains RRP $546.99 This monograph is devoted to Krull domains and its invariants. The book shows how a serious study of invariants of Krull domains necessitates input from various fields of mathematics, including rings and module theory, commutative algebra, Ktheory, cohomology theory, localization theory and algebraic geometry. About half of the book is dedicated to socalled involutive invariants, such as the involutive Brauer group, and is essentially the first to cover these topics. In a structured and methodical way, the work presents a large quantity of results previously scattered throughout the literature. Audience: This volume is recommended as a first introduction to this rapidly developing subject, but will also be useful as a stateoftheart reference work, both to students at graduate and postgraduate levels and to researchers in commutative rings and algebra, algebraic Ktheory, algebraic geometry, and associative rings. Classical And Involutive Invariants Of Krull Domains RRP $27.99 Just suppose, for a moment, that all rings of integers in algebraic number fields were unique factorization domains, then it would be fairly easy to produce a proof of Fermat's Last Theorem, fitting, say, in the margin of this page. Unfortunately however, rings of integers are not that nice in general, so that, for centuries, mathÂ ematicians had to search for alternative proofs, a quest which culminated finally in Wiles' marvelous results  but this is history. The fact remains that modern algebraic number theory really started off with inÂ vestigating the problem which rings of integers actually are unique factorization domains. The best approach to this question is, of course, through the general theÂ ory of Dedekind rings, using the full power of their class group, whose vanishing is, by its very definition, equivalent to the unique factorization property. Using the fact that a Dedekind ring is essentially just a onedimensional global version of discrete valuation rings, one easily verifies that the class group of a Dedekind ring coincides with its Picard group, thus making it into a nice, functorial invariant, which may be studied and calculated through algebraic, geometric and co homological methods. In view of the success of the use of the class group within the framework of Dedekind rings, one may wonder whether it may be applied in other contexts as well. However, for more general rings, even the definition of the class group itself causes problems. Search
Polo Articles
Polo Books

